
Achieving Zero-Glance Unlearning with Data-Free
Inversion and Selective Parameters Suppression

1st Puwei Lian
College of Computer and Data Science

Fuzhou University
Fuzhou, China

lianpuwei@outlook.com

2nd Xiao Ke
College of Computer and Data Science

Fuzhou University
Fuzhou, China
kex@fzu.edu.cn

3rd Zhou Tan
College of Computer and Data Science

Fuzhou University
Fuzhou, China

zhoutan899@gmail.com

4th Jianping Cai
Faculty of Data Science
City University of Macau

Macao, China
jpcai@cityu.edu.mo

5th Ximeng Liu*
College of Computer and Data Science

Fuzhou University
Fuzhou, China

snbnix@gmail.com

Abstract—In machine learning (ML), data deletion involves
more than just removing data from a dataset. Machine unlearn-
ing enables ML models to eliminate the effects of specific data
that needs to be deleted. Under zero-glance settings, we may lack
the right to utilize the data slated for removal during unlearning,
thereby heightening the complexity. To address this challenge, we
propose UISPS, which employs data-free inversion to generate
replacement data for unavailable forgotten data. Utilizing the
generated data, we propose selective parameter suppression to
address the issue of catastrophic forgetting during unlearning
effectively. Its interpretability improves the reliability of unlearn-
ing under zero-glance conditions. The experiments demonstrate
that UISPS performs forgotten tasks with commendable results.
Meanwhile, UISPS maintains higher accuracy on retained data,
improving it by up to 3.34% while reducing the attack success
rate of membership inference attacks by 25.85% ∼ 39.54%
compared to the state-of-the-art.

Index Terms—Machine Unlearning, Model Inversion, Catas-
trophic Forgetting, Privacy and Security.

I. INTRODUCTION

Regulatory frameworks such as the EU’s General Data
Protection Regulation (GDPR) and the California Consumer
Privacy Act (CCPA) have been established to enforce data pro-
tection. These regulations require companies and organizations
to implement a “deletion on demand” framework, granting
users the “right to be forgotten”, which enables them to request
the deletion of specific data along with its derivatives. The
unique learning mechanisms employed in machine learning
make these systems vulnerable to privacy attacks [1], [2]. Such
attacks could potentially lead to unauthorized access to the tar-
get model and the extraction of private information. Therefore,
when users request the removal of their data, merely deleting
the corresponding entries from the database is insufficient.
Thus, the innovative concept of machine unlearning has been
introduced [3].

* is the corresponding author.

Machine unlearning refers to the ability of a trained model
to forget a specific set of data. While it is undoubtedly
possible to retrain a model using only the retained data,
this approach can be computationally intensive. Initially, the
focus on unlearning was mainly on simpler machine learning
algorithms [4], [5], [6]. However, these methods tended to be
effective primarily for small-scale problems. Many researchers
have since explored the challenges of unlearning in deep neural
networks [7], [8]. Despite their efforts, these methods still
struggle with computational efficiency and time consumption,
especially when tackling complex deep-learning architectures.
Recently, Chundawat et al. [9] proposed a two-teacher model
for unlearning. Foster et al. [10] introduced a model pruning
technique for fast unlearning. Both approaches have yielded
positive results with complex neural networks. However, a
critical limitation remains: these algorithms are ineffective if
the data to be forgotten is unavailable (zero-glance). The zero-
glance conditions closely reflect real-life scenarios where users
request the deletion of their data, indicating their desire for this
data not to be stored or utilized by the model owner. Graves et
al. [11] proposed a method that involves storing past parameter
updates and reversing the corresponding data updates during
the unlearning process; however, this approach can consume
considerable storage space. Tarun et al. [12] introduced a
technique that generates error-maximizing noise for each class
selected for forgetting (UNSIR). While this method is intu-
itively appealing, it lacks a certain level of interpretability, as
it may inadvertently compromise the parameters linked to the
retained data. After the unlearning process, UNSIR typically
requires one epoch or more for repair operations, as it may
suffer from catastrophic forgetting.

To address the above problem, we propose the Unlearn-
ing with Data-Free Inversion and Selective Parameters Sup-
pression framework (UISPS), considering data-free inversion
to generate replacement data for unavailable forgotten data.
Utilizing the generated data, we propose selective parameters

Fig. 1: Overview of UISPS.

suppression (SPS), which identifies the parameters that con-
tribute more to the retained data and less to the forgotten data
by the diagonal of the Fisher Information Matrix (FIM) and
suppresses their changes, reliably mitigating the oscillations
in the model performance and guaranteeing the excellent
performance of the model on the retained data. Our main
contributions are as follows:

• In this work, we propose the UISPS framework, which
employs data-free inversion to generate replacement data
for unavailable forgotten data. This approach offers a new
perspective for addressing class-level unlearning under
zero-glance conditions.

• We propose Selective Parameter Suppression. By analyz-
ing the diagonal of the FIM, we can suppress parameters
that contribute more to retained data and less to forgotten
data. This added interpretability enhances the reliability
of unlearning operations while mitigating the issue of
catastrophic forgetting.

• Compared to previous methods, UISPS effectively elim-
inates memory related to forgotten class from the model
while demonstrating superior performance on retained
classes. UISPS outperforms state-of-the-art (SOTA) in
terms of model performance and forgetfulness, and it
performs robustly against member inference attacks.

II. RELATED WORK
A. Machine Unlearning

Bourtoule et al. [3] proposed dividing the training dataset
into mutually non-overlapping slices and using multiple mod-
els to train disjoint slices separately, resulting in numerous
weak learning models. The unlearning effect can be achieved
by retraining the weak learning model corresponding to the
deleted data. Grounded in Certified Removal Mechanisms,
Guo et al. [13] solved the unlearning problem for linear
models and convex losses. The data removal problem under
the Random Forest algorithm was studied by Brophy et al. [4].
Methods proposed by Ginart et al. [5] and Mirzasoleiman et al.

[6] support data deletion in the k-means clustering problem. In
[14], the authors proposed an unlearning approach to support
a stream of data deletion requests.

B. Deep Machine Unlearning

In deep learning, it’s challenging to trace the impact of each
data piece accurately, thus adding complexity to unlearning
under deep neural networks. Golatkar et al. [7] proposed an
information-theoretic method to erase information from inter-
mediate layers of deep networks trained with SGD. Graves et
al. [11] stored model updates for each data during training and
completed unlearning by deleting historical updates. Model
pruning has also been shown to be a way to achieve unlearning
[15], [10]. Unlearning based on the teacher-student framework
has also been studied [9]. Tarun et al. [12] investigated the
unlearning problem with no access to forgotten data for the
first time.

III. PRELIMINARIES

A. Unlearning Settings

We assume that the complete dataset is Dc = {(xi, yi)}ni=1,
where xi represents the ith sample, yi ∈ {1, . . . ,K} denotes
the label corresponding to that sample, and n represents the
number of data. The samples in the forgotten set are denoted as
Df . In this paper, we study unlearning at the class level, so Df

corresponds to the class data that needs to be forgotten. Also,
we set the retained dataset to Dr, representing the retained
class data. Thus, Df and Dr together denote the entire dataset,
and they are mutually exclusive, i.e., Df ∪ Dr = Dc and
Df ∩Dr = ϕ.

B. Zero-glance Settings

Tarun et al. [12] introduced a more stringent privacy setting
called zero-glance privacy scenario, i.e., the model doesn’t
have access to the data that need to be forgotten, wherein the
data in question should be promptly removed from the dataset
when the user proposes to delete their data. Following [12],

we consider class-level unlearning. When a class is proposed
for deletion, we only know its corresponding labels Yi, yet we
lack access to its corresponding dataset Df . So, we can’t use
the data from that class. All experiments in this paper will be
performed under zero-glance conditions.

IV. METHODOLOGY

A. Overview

UISPS provides a new perspective on the problem of
unlearning under zero-glance conditions. It consists of two
steps, as shown in Fig.1. i) Data-Free Inversion Synthetic
Data: generate replacement data for the class that needs to
be forgotten; ii) Unlearning with Selective Parameters Sup-
pression: Suppress changes in parameters that are important
for retained data performance during unlearning. Algorithm 1
in the Appendix provides a detailed process.

B. Data-Free Inversion Synthetic Data

We assume that the model for which unlearning is to be
performed is M and its model parameters are θ. First, we
randomly initialize a batch of samples x̂. Our objective is to
systematically transform this batch of samples into replace-
ment samples of forgotten data. We call the data obtained after
inversion Dg . The initial step is to ensure the recognition of
these samples by M as belonging to the class to be forgotten.
We employ cross-entropy loss to iteratively update the samples
x̂ in the direction where M outputs labels corresponding to
the forgotten class:

LCE(x̂, Yi; θ) = CE(M(x̂; θ), Yi), (1)

where CE(·) represents the cross-entropy.
Following the proposal in [16], we assume that feature

statistics adhere to a Gaussian distribution across batches,
defined by mean µ and variance σ2. Subsequently, the reg-
ularization term for feature distribution can be formulated as:

LBN (x̂; θ) =
∑
l

∥µl(x̂)− E (µl(x))∥2 +∑
l

∥∥σ2
l (x̂)− E

(
σ2
l (x)

)∥∥
2
,

(2)

where µl(x̂) and σ2
l (x̂) are the batch-wise mean and vari-

ance estimates of feature maps corresponding to the lth

convolutional layer. The E(·) and ∥·∥ operators denote the
expected value and ℓ2 norm calculations, respectively. A BN
layer normalizes the feature maps during training to alleviate
covariate shifts. Thus, the values of E (µl(x)) and E

(
σ2
l (x)

)
approximate the values of running mean and running variance
obtained from the lth BN layer.

With the loss function described above, we have been able
to generate replacement data; however, we observe that the
synthesized data may be far from the decision boundary with
high confidence. While the high-confidence data represents
the main component of knowledge, it also lacks key features
about the model’s decision boundary, as shown in the left
panel of Fig.2. We know that during class-level unlearning,
the decision boundary of the forgotten class will change. The

Fig. 2: The illustration of generated data and decision bound-
ary. Left panel: Synthetic data are far from the decision
boundary. Right panel: We can generate more data near
the decision boundaries by utilizing entropy-based partial
regularization.

lack of decision boundary features may result in the decision
boundary not being adjusted in the most appropriate direc-
tion during unlearning. Our ablation experiments have also
demonstrated that there may be a risk of residual knowledge.
Low-confidence data provide more key features about decision
boundaries than high-confidence data because these data have
higher entropy [17]. Therefore, we aim to generate some
data far from the decision boundary. So, we use entropy-
based partial regularization intending to generate both high
and low-confidence data as shown in the right panel of Fig.2.
We assume that x̂sub ⊆ x̂ and take out the data x̂sub for
regularization:

p(y|x̂sub, θ) = Softmax (M(x̂sub; θ)), (3)

LET (x̂sub; θ) = −
c∑

y=1

p(y|x̂sub, θ) log p(y|x̂sub, θ), (4)

where c denote the class index. By combining the above
losses, we can obtain the model inversion loss as follows:

LG = LCE(x̂, Yi; θ) + λ1LBN (x̂; θ) + λ2LET (x̂sub; θ), (5)

where λ1, λ2 denote the weights corresponding to the respec-
tive losses. Through continuous updating, we will obtain the
generated data Dg .

C. Unlearning with Selective Parameters Suppression

There is no direct mapping relationship between the pa-
rameters of the neural network and the data. Suppose we
directly destroy the parameters related to the forgotten data
during unlearning. Due to the inherent knowledge entangle-
ment in neural networks, the parameters associated with the
retained data will also be partially affected, contributing to
the phenomenon known as catastrophic forgetting. We hope
to minimize updates that harm model performance while
ensuring that unlearning proceeds normally. Therefore, we
propose selective parameter suppression to achieve this goal.
Fisher Information Matrix I(θ;D) is defined as the negative

TABLE I: Unlearning Results on ResNet18

Method 1-CIFAR-10 3-CIFAR-10 1-SVHN 3-SVHN

ADr ADf
MIA ADr ADf

MIA ADr ADf
MIA ADr ADf

MIA

Original 94.26 93.37 99.42 95.37 92.43 99.67 96.07 97.75 99.97 96.80 96.73 99.94
Retrain 94.00 0.00 71.64 96.57 0.00 46.71 96.38 0.00 8.72 97.53 0.00 14.91
Fisher 21.56 0.22 49.21 18.18 0.00 31.58 43.51 0.00 10.17 29.23 0.00 20.12
Fine-Tune 82.49 1.20 73.72 85.61 0.10 49.64 90.90 0.14 44.88 92.33 0.00 60.79
Amnesiac 87.59 0.46 50.66 89.37 0.00 50.61 92.11 0.00 16. 34 93.19 0.00 19.88
UNSIR 87.50 8.43 68.41 90.32 2.99 65.96 93.17 3.00 19.44 93.99 0.72 24.01
UISPS 89.30 0.00 33.92 93.66 0.00 26.42 94.16 0.00 4.31 95.48 0.00 9.79

of the expected value of the second derivative of the log-
likelihood function:

I(θ;D) = −ED

[
∂2 ln p(yi|θ, xi)

∂θ2

]
, (6)

where D = {(xi, yi)}Ni=1, N is the number of samples in D.
We can express the FIM as the expected value of the outer
product of the first derivative:

I(θ;D) = ED

[
∂ ln p(yi|θ, xi)

∂θ

] [
∂ ln p(yi|θ, xi)

∂θ

]T
. (7)

The likelihood function is very complex, and it isn’t easy to
calculate the expectation. We can approximate its value with
the expectation of the empirical distribution:

I(θ;D) ≈ 1

N

N∑
i=1

[
∂ ln p(yi|θ, xi)

∂θ

] [
∂ ln p(yi|θ, xi)

∂θ

]T
.

(8)
Even without explicitly computing the second-order deriva-
tives, the cost of computing the FIM is still large. Therefore,
we only rely on the diagonal of the FIM to judge the
importance of the parameters. So it can be simplified to:

I(θ;D) ≈ 1

N

N∑
i=1

[
∂ ln p(yi|θ, xi)

∂θ

]2
. (9)

It allows us to estimate the uncertainty of a parameter without
complex calculations. We then use a small subset of the
retained data D′

r ⊆ Dr and generated data Dg to calculate
the importance of the model parameters, respectively:

γg
θi
← I(θ;Dg), γ

r
θi ← I(θ;D′

r), i ∈ [0, |θ|], (10)

where γg
θi

(γr
θi

) is the i-th element of the diagonal of the FIM,
calculated over the set Dg(D′

r). We then normalize separately
to get the importance scores of the parameters on the two
datasets:

γ̂
g(r)
θi

= Norm(γ
g(r)
θi

) =
γ
g(r)
θi
−min(γ

g(r)
θ)

max(γ
g(r)
θ)−min(γ

g(r)
θ)

. (11)

We hope to suppress the parameters that contribute less to
the forgotten data and more to the retained data. This allows
us to suppress the performance oscillation of the model
while updating some parameters to achieve the purpose of

unlearning. Therefore, we filter out the suppressed parameters
based on the normalized scores:

θs =

{
θs ∪ θi, if γ̂r

θi
> αγ̂g

θi
,

θs, if γ̂r
θi

< αγ̂g
θi
.
∀i ∈ [0, |θ|], (12)

where θs is initialized to empty. Then, during the unlearning
process, these parameters will not be updated. We relabelled
the generated data Dg using the untrained model Mt with
parameter θt, thus obtaining the new soft label:

D′
g := {(x, y′) : (x, y) ∈ Dg, y

′ ← Mt(x; θt)}. (13)

Such a labeling approach is intended to make the model
M perform as well as the untrained model on the forgotten
data, achieving the purpose of unlearning. We then use cross-
entropy loss Lunlearn to train the model with one epoch on
the generated data and the retained data:

Lunlearn(x̄, ȳ; θ) = CE(M(x̄; θ), ȳ), (14)

where (x̄, ȳ) ⊆ (Dr ∪ D′
g). Finally, we will complete the

unlearning by updating the model as follows:

θ′i =

{
θi if θi ∈ θs,

θi + λ∇θiLunlearn(x̄, ȳ; θ) otherwise.
(15)

V. EXPERIMENTS

We demonstrate the effectiveness of our method in forget-
ting single class and multiple classes across diverse settings.
For our experiments and evaluations, we employed various
deep neural networks, namely ResNet18 [18] and AllCNN
[19], to showcase the superiority of the UISPS. The effec-
tiveness of UISPS is validated on different datasets, including
CIFAR-10 [20], CIFAR-100 [20], and SVHN [21].

A. Experimental Settings

All models were trained on the complete dataset for 50
epochs until convergence initially. The models retrained on
the retained data were trained for 50 epochs. The experiments
were executed using an NVIDIA Tesla-V100 (16GB) GPU.

Implementation details of model inversion: We synthesize
32 samples for each forgotten class, with the learning rate of
0.01, λ1 is set to 0.01, λ2 to 0.05. We perform 1000 iterations
for each batch of synthetic data.

TABLE II: Ablation Experiments on ResNet18.

ENT SPS Metrics SVHN CIFAR-10 CIFAR-100
1 3 5 7 1 3 5 7 20 40 60 80

× × ADr 89.56 92.10 92.83 93.02 87.11 88.47 91.19 91.57 66.99 69.71 70.02 79.55
ADf

0.48 0.33 0.02 0.00 3.59 1.52 0.99 0.84 2.10 0.98 1.01 0.33

× ✓
ADr 93.41 95.18 95.67 96.34 88.19 93.14 95.36 95.88 69.56 72.69 75.41 81.65
ADf

0.99 0.56 0.00 0.00 4.53 2.39 2.44 1.90 1.52 1.58 0.46 0.00

✓ × ADr 91.12 92.69 93.18 93.28 87.92 89.14 92.05 92.27 67.43 69.19 72.31 77.80
ADf

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

✓ ✓
ADr 94.16 95.48 95.93 96.38 89.30 93.66 95.58 95.68 69.84 72.81 75.42 81.79
ADf

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Implementation details of unlearning: The model was
trained using synthetic and retained data with a batch size
of 128. On CIFAR-10, the learning rate for ResNet18 is
0.002, and AllCNN is 0.03. For CIFAR-100, ResNet18 uses a
learning rate of 0.002. On SVHN, the learning rates are 0.003
for ResNet18 and 0.03 for AllCNN. We set α to 1.5 and trained
the model for one epoch to complete the unlearning.

Compared methods: We compare our method with various
methods applicable to zero-glance conditions. 1) UNSIR [12]:
unlearning based on error-maximizing noise. 2) Fine Tune:
the fine-tuned model on Dr. 3) Amnesiac [11]: unlearning by
canceling the parameters update. 4) Fisher Forgetting [7]. 5)
Retrain: the model trained on retain set Dr.

Evaluation Metrics: In our experimental analysis, we used
the following metrics to determine the effectiveness of the
unlearning method. 1) Accuracy on forget set (ADf

): Should
be similar to the retrained model, the accuracy of the forgotten
class of the retrained model is usually 0%. This is because
after the model removes the knowledge of a class, it tends
to be more inclined to other classes that have been learned
when making predictions. 2) Accuracy on retain set (ADr

):
Should be similar to the retrained model or original model.
3) Membership inference attack (MIA): The attack is
performed to check if any information about the forgotten data
remains in the model. The attack success rate should be lower
on the forget set in the unlearned model.

TABLE III: Results of ResNet18 on CIFAR-100.

Method
40-CIFAR-100 60-CIFAR-100 80-CIFAR-100

ADr ADf
ADr ADf

ADr ADf

Original 75.21 74.27 75.12 74.90 78.16 74.13
Retrain 76.09 0.00 78.35 0.00 83.72 0.00
Fine-Tune 66.78 1.24 70.11 0.16 75.63 0.03
Amnesiac 71.09 3.47 73.99 6.97 80.65 0.77
UNSIR 70.77 1.24 74.34 0.28 80.51 0.00
UISPS 72.81 0.44 75.42 0.11 81.79 0.00

B. Model Performance Analysis

We show the 1 and 3 class(es) unlearning results using
ResNet18 in Table I. UISPS effectively eliminates information

related to the forgotten data in the model, resulting in a
0% accuracy on ADf

. This is attributed to low-entropy data
guiding changes in decision boundaries. UNSIR and Fine-
Tune typically suffer from memory residue in forgetting tasks.
Amnesiac performs well on forgetting tasks, but it requires
many historical updates to support it. Simultaneously, while
ensuring forgetting, we achieve high accuracy on retained
data (Dr). Our method showed better results than UNSIR and
Amnesiac. The ADr

of ResNet18 can be improved by up to
3.34%, compared to the state-of-the-art. This is due to SPS’s
suppression of essential parameters, so the model’s perfor-
mance in retained data will not experience significant drift. To
demonstrate the superiority of UISPS, we conducted a large-
scale unlearning experiment on CIFAR-100 and performed
experiments with forgetting 40, 60, and 80 classes. According
to Table III, our method enables the model to maintain the best
performance, improving model performance by up to 2.04%. It
is worth noting that UISPS doesn’t need to fine-tune or repair
the model compared with UNSIR, and it does not take a lot of
space to store a large amount of updated data as [11]. Further
results on AllCNN are provided in Appendix Tables IV and V.

C. Membership Inference Attacks

We report the attack success rate (ASR) of various unlearn-
ing methods under MIA in Table I. Experiments show that
UISPS has excellent defense capabilities against membership
inference attacks among all methods. Compared with the
original model, we successfully reduced ASR by 81.09% on
average and up to 95.66%. At the same time, compared to
SOTA, we reduce ASR by 25.85% on average and up to
39.54%. This shows that UISPS removes the influence of
data from the model more efficiently to show the probability
distribution of the data on which it has not been trained. Our
method is better at making the model forget knowledge rather
than covering up traces of past learning. This fully reflects the
robustness of UISPS and reduces the risk of privacy exposure
to forgotten data.

D. Ablation Experiments

As depicted in Table II, we present the results of the abla-
tion experiments on the ResNet18 when forgetting different
numbers of classes. Experiments show that when entropy-
based regularization is added, the model can better adjust

(a) CIFAR-10 (b) SVHN

Fig. 3: T-SNE visualization of ResNet18 on CIFAR10 and
SVHN. The red part is the data that needs to be forgotten,
and the black part is the generated data. The other parts are
data of other classes.

the decision boundary, reducing ADf
by up to 4.53% and

maintaining it stably at 0%. By adding SPS, it can effectively
prevent parameter adjustments that affect model performance,
increasing ADf

by 2.19% ∼ 5.40%. Experiments have shown
that our method can effectively improve the completion quality
of unlearning tasks. In addition, we tested the transferability
of SPS using other methods. We employed a two-teacher
distillation model [9] for unlearning. The transferability of SPS
is provided relevant analysis in the Appendix.

E. Analysis of Model Inversion Results

We employ T-SNE to visualize the features extracted by the
network, demonstrating that the generated data can serve as
replacement data for the forgotten class data. As illustrated
in Fig. 3, the features of the generated data closely align
with those of the data that need to be replaced. With the
incorporation of entropy-based regularization, the generated
images become closer to data from other classes and exhibit
higher entropy. This observation supports our hypothesis and
confirms the effectiveness of data-free model inversion.

VI. CONCLUSION

In this work, we propose UISPS framework which gener-
ates data of forgotten classes through data-free inversion and
unlearning with selective parameters suppression to mitigate
the deterioration of model performance. It provides a more
interpretable unlearning perspective and a simple and efficient
solution to catastrophic forgetting. Experiments in different
settings verify the effectiveness of our method. Compared
with SOTA, we show better performance in both model
performance and anti-privacy attack capabilities.

REFERENCES

[1] Xin Liu, Yue Xu, and Kun He, “Improving the sar image adversarial
transferability through dual-loop ensemble gradient attack,” in 2024
IEEE International Conference on Multimedia and Expo (ICME). IEEE,
2024, pp. 1–6.

[2] Yuchen Wang, Xiaoguang Li, Li Yang, Lu Zhou, Jianfeng Ma, and Hui
Li, “Adaptive oriented adversarial attacks on visible and infrared image
fusion models,” in 2024 IEEE International Conference on Multimedia
and Expo (ICME). IEEE, 2024, pp. 1–6.

[3] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-
Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and
Nicolas Papernot, “Machine unlearning,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp. 141–159.

[4] Jonathan Brophy and Daniel Lowd, “Machine unlearning for random
forests,” in International Conference on Machine Learning. PMLR,
2021, pp. 1092–1104.

[5] Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou,
“Making ai forget you: Data deletion in machine learning,” Advances
in neural information processing systems, vol. 32, 2019.

[6] Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause, “Deletion-
robust submodular maximization: Data summarization with “the right
to be forgotten”,” in International Conference on Machine Learning.
PMLR, 2017, pp. 2449–2458.

[7] Aditya Golatkar, Alessandro Achille, and Stefano Soatto, “Eternal
sunshine of the spotless net: Selective forgetting in deep networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 9304–9312.

[8] Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia
Polito, and Stefano Soatto, “Mixed-privacy forgetting in deep networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognitionn, 2021, pp. 792–801.

[9] Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan
Kankanhalli, “Can bad teaching induce forgetting? unlearning in deep
networks using an incompetent teacher,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2023, vol. 37, pp. 7210–7217.

[10] Jack Foster, Stefan Schoepf, and Alexandra Brintrup, “Fast machine
unlearning without retraining through selective synaptic dampening,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2024,
vol. 38, pp. 12043–12051.

[11] Laura Graves, Vineel Nagisetty, and Vijay Ganesh, “Amnesiac machine
learning,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2021, vol. 35, pp. 11516–11524.

[12] Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan
Kankanhalli, “Fast yet effective machine unlearning,” IEEE Transactions
on Neural Networks and Learning Systems, 2023.

[13] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van
Der Maaten, “Certified data removal from machine learning models,”
arXiv preprint arXiv:1911.03030, 2019.

[14] Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-
Malvajerdi, and Chris Waites, “Adaptive machine unlearning,” Advances
in Neural Information Processing Systems, vol. 34, pp. 16319–16330,
2021.

[15] Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu,
PRANAY SHARMA, Sijia Liu, et al., “Model sparsity can simplify
machine unlearning,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[16] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun
Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz, “Dreaming to distill:
Data-free knowledge transfer via deepinversion,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 8715–8724.

[17] Huan Liu, Li Gu, Zhixiang Chi, Yang Wang, Yuanhao Yu, Jun Chen, and
Jin Tang, “Few-shot class-incremental learning via entropy-regularized
data-free replay,” in European Conference on Computer Vision. Springer,
2022, pp. 146–162.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep resid-
ual learning for image recognition,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–
778.

[19] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin
Riedmiller, “Striving for simplicity: The all convolutional net,” arXiv
preprint arXiv:1412.6806, 2014.

[20] Alex Krizhevsky, Geoffrey Hinton, et al., “Learning multiple layers of
features from tiny images,” 2009.

[21] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin
Wu, Andrew Y Ng, et al., “Reading digits in natural images with
unsupervised feature learning,” in NIPS workshop on deep learning
and unsupervised feature learning. Granada, Spain, 2011, vol. 2011,
p. 7.

VII. APPENDIX

A. Detailed Process of the Algorithm

Algorithm 1 UISPS
Input: Training iterations E , trained model M , synthetic class
Yi, retained data Dr, learning rate λ.
Output: Unlearned model Mu with parameter θu.

1: Randomly initialize model Mt and initialize model M
with pretrained parameters θ. Randomly initialized x̂ to
the same size as the input of M . Initialize Dg ∈ ϕ, θs ∈ ϕ.
// Data-Free Inversion Synthetic Data

2: for l = 1 ...L do
3: E (µl(x)) ← running mean of lth BN layer of M
4: E

(
σ2
l (x)

)
← running variance of lth BN layer of M

5: end for
6: for e = 1 ...E do
7: Calculate cross-entropy loss LCE ▷Eq.(1)
8: for l = 1 ...L do
9: Calculate feature distribution loss LBN ▷Eq.(2)

10: end for
11: Calculate probability distributions p ▷Eq.(3)
12: Calculate the entropy of distributions LET ▷Eq.(4)
13: Update x̂ via total loss LG ▷Eq.(5)
14: end for
15: Obtaining synthetic data Dg = Dg ∪ x̂

// Unlearning with Selective Parameters Suppression
16: D′

r ← Take a small portion from the retained data Dr

17: γg
θi
← Calculate the FIM diagonal on data Dg ▷Eq.(9)

18: γr
θi
← Calculate the FIM diagonal on data D′

r ▷Eq.(9)
19: γ̂r

θi
← Norm(γr

θi
), γ̂g

θi
← Norm(γg

θi
) ▷Eq.(11)

20: for i = 0 ...|θ| do

21: θs =

{
θs ∪ θi, if γ̂r

θi
> αγ̂g

θi

θs, if γ̂r
θi

< αγ̂g
θi

22: end for
23: D′

g ← Relabel Dg using Mt ▷Eq.(13)
24: for (x̄, ȳ) in (D′

g ∪Dr) do
25: Calculate cross entropy loss Lunlearn ▷Eq.(14)
26: Update model parameters θ ▷Eq.(15)
27: end for
28: return model M

B. Additional Experimental Results

TABLE IV: Results of AllCNN on CIFAR-10.

Method 1-CIFAR-10 2-CIFAR-10 3-CIFAR-10

ADr ADf
ADr ADf

ADr ADf

Original 86.31 93.51 88.16 89.90 89.00 82.18
Retrain 86.57 0.00 89.56 0.00 91.96 0.00
Fine-Tune 81.15 5.03 84.20 0.19 88.18 2.72
Amnesiac 79.91 1.04 85.49 0.00 88.15 0.00
UNSIR 78.90 9.70 84.67 4.28 87.86 3.00
UISPS 81.26 0.00 86.44 0.00 89.16 0.00

TABLE V: Results of AllCNN on SVHN.

Method 1-SVHN 2-SVHN 3-SVHN

ADr ADf
ADr ADf

ADr ADf

Original 95.22 96.72 95.31 95.90 95.27 95.81
Retrain 95.34 0.00 96.90 0.00 96.90 0.00
Fine-Tune 93.05 1.84 94.14 0.36 94.13 0.03
Amnesiac 94.12 0.00 95.19 0.00 95.65 0.00
UNSIR 93.11 1.42 94.35 2.80 94.92 0.00
UISPS 94.46 0.00 95.64 0.00 96.70 0.00

C. Using Different Proportions of Retain Data

In some cases, we may not have access to all of the retained
data, or the volume of retained data is so extensive that
utilizing all of it becomes prohibitively expensive. Therefore,
we explored the model’s performance with varying proportions
of retained data. The detailed results are in Tables VI and VII.
Experiments were conducted on the SVHN dataset using 80%,
60%, 40%, and 20% retained data. Our method maintains good
performance with lower percentages of retained data; even if
only 20% of the data is retained, the ADr

only dropped by
1.83% ∼ 3.38%. This shows that UISPS is still effective even
under more demanding conditions.

TABLE VI: Multiple class unlearning (3 classes) in AllCNN
with different proportions of retained data on SVHN.

Percentage Metrics Original Retrain UNSIR Fine-Tune UISPS

80%
ADr 95.27 96.62 94.47 92.31 95.41

ADf
95.81 0.00 0.42 0.13 0.00

60%
ADr 95.27 96.23 93.88 90.82 95.02

ADf
95.81 0.00 0.74 0.07 0.00

40%
ADr 95.27 96.02 93.55 90.11 94.75

ADf
95.81 0.00 1.03 0.00 0.00

20%
ADr 95.27 94.00 92.61 89.53 93.42

ADf
95.81 0.00 0.16 0.00 0.00

TABLE VII: Multiple class unlearning (3 classes) in ResNet18
with different proportions of retained data on SVHN.

Percentage Metrics Original Retrain UNSIR Fine-Tune UISPS

80%
ADr 96.80 97.48 93.91 92.03 95.42

ADf
96.73 0.00 0.46 0.43 0.00

60%
ADr 96.80 97.38 93.51 91.61 94.92

ADf
96.73 0.00 0.88 0.16 0.00

40%
ADr 96.80 96.71 93.16 89.28 94.53

ADf
96.73 0.00 1.89 0.05 0.00

20%
ADr 96.80 93.65 92.28 89.23 93.65

ADf
96.73 0.00 2.08 0.00 0.00

TABLE VIII: Transferability of SPS.

Method Metrics
SVHN CIFAR-10 CIFAR-100

1 3 5 7 1 3 5 7 20 40 60 80

TTM
ADr 92.80 95.02 94.94 95.05 76.49 81.61 87.69 92.17 68.19 69.42 72.99 76.52

ADf
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

+SPS
ADr 94.05 95.12 96.03 96.46 76.98 82.36 89.58 92.71 69.46 69.98 73.67 76.65

ADf
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(a) 1-class(ResNet18) (b) 3-class(ResNet18)

(c) 1-class(AllCNN) (d) 3-class(AllCNN)

Fig. 4: Prediction distribution of the unlearned model on
forgotten class(es) of data.

D. Transferability of SPS:

To showcase the transferability of SPS, we employed a two-
teacher distillation model for the forgetting task, comparing
the model’s performance before and after using selective
parameters suppression. We use AllCNN to test single-class
and multi-class unlearning on three datasets. Table VIII shows
that SPS can improve the model’s performance, demonstrating
high transferable to other methods. This is because in most
unlearning approaches, ensuring model performance needs to
be attended to alongside forgetting, whereas SPS measures a
good balance between the two.

E. Prediction Distribution for the Forget Class of Data

In Fig.4, we depict the distribution of predictions by the
unlearned model on CIFAR-10 for the forgetting class(es).
For single-class forgetting, we illustrate the predictions of
ResNet18 and AllCNN for the forgetting class (class1). For
multi-class forgetting, we showcase the prediction distribution
of ResNet18 and AllCNN for the forgetting classes (class1,
class2, class3). The results demonstrate that our method does

Fig. 5: comparison of the distribution of predictions of our
method with SOTA and retrain model in the forgotten class.
Compared to SOTA, our approach brings the distribution of
model predictions closer to the retrained model.

TABLE IX: Time Overhead.

Metrics UNSIR Amnesiac Fine-Tune Retrain UISPS
Time 173.08s 192.30s 221.15s 1355.75s 194.10s

not induce the model to predict a clear pattern on the forgotten
data; instead, it is closer to a random distribution. Such a
distribution ensures that the forgotten classes are unrelated
to the data of other retained classes, thereby reducing the
possibility of countering attacks. Furthermore, we compare
the distribution of predictions in the forgetting class with the
SOTA and retrained model, as shown in Fig. 5. The experiment
reveals that the predictions of the unlearned model closely
resemble those of the model that has not encountered the
forgotten class(es). UNSIR can induce a specific pattern in the
model predictions, and the displayed prediction distribution
may deviate significantly from that of the retrained model.
This further underscores, by comparison with SOTA, that our
model successfully forgets the data that needs to be forgotten
and exhibits the effect of never being trained on these data.

F. Computational Overhead

We supplemented the time-overhead experiments of the
various algorithms. We calculate the time of single-class
forgetting of ResNet18 on CIFAR-10. As shown in Table
IX, our approach is similar to Amnesiac in terms of time
overhead, although our time-overhead was not the least, but it
is only about 20s slower than UNSIR. Compared to UNSIR,

it took only a small amount of time to achieve better results.
Therefore, such a time overhead is acceptable.

TABLE X: ResNet18 uses different α on CIFAR-10.

Metrics α = 0.5 α = 1.0 α = 1.5 α = 2.0 α = 2.5 α = 3.0

ADr 90.88 89.20 89.30 88.65 88.01 87.88
ADf

39.28 1.66 0.00 0.00 0.00 0.00

TABLE XI: ResNet18 uses different α on SVHN.

Metrics α = 0.5 α = 1.0 α = 1.5 α = 2.0 α = 2.5 α = 3.0

ADr 94.91 94.78 94.16 94.05 93.15 92.92
ADf

9.79 0.78 0.00 0.00 0.00 0.00

TABLE XII: ResNet18 uses different λ1 and λ2 on CIFAR-10

Metrics λ1/λ2 λ1 = 0.005 λ1 = 0.01 λ1 = 0.05 λ1 = 0.1 λ1 = 0.15

ADr

λ2 = 0.01 88.75 88.54 88.62 89.71 89.57
λ2 = 0.05 88.87 89.30 89.29 88.85 88.89
λ2 = 0.10 88.83 88.61 89.36 88.78 89.11
λ2 = 0.50 89.15 88.71 89.88 88.96 88.30
λ2 = 1.00 88.63 89.32 88.14 88.21 88.88

ADf

λ2 = 0.01 0.51 1.02 0.44 0.22 0.00
λ2 = 0.05 0.00 0.00 0.00 0.87 0.71
λ2 = 0.10 0.61 0.00 0.00 0.00 0.86
λ2 = 0.50 0.00 0.00 0.00 0.00 0.00
λ2 = 1.00 0.00 0.00 1.23 0.00 0.00

TABLE XIII: ResNet18 uses different λ1 and λ2 on SVHN.

Metrics λ1/λ2 λ1 = 0.005 λ1 = 0.01 λ1 = 0.05 λ1 = 0.1 λ1 = 0.15

ADr

λ2 = 0.01 93.78 93.16 93.90 94.19 93.70
λ2 = 0.05 94.06 94.16 93.51 93.20 93.29
λ2 = 0.10 93.32 94.03 93.80 93.10 93.76
λ2 = 0.50 93.71 93.99 93.40 94.22 93.40
λ2 = 1.00 93.69 93.20 93.29 93.38 94.03

ADf

λ2 = 0.01 0.42 0.00 1.11 0.05 1.01
λ2 = 0.05 0.00 0.00 0.12 0.00 0.00
λ2 = 0.10 0.00 0.00 0.74 0.42 0.00
λ2 = 0.50 0.00 0.00 0.00 0.00 0.00
λ2 = 1.00 0.00 0.00 0.00 0.00 0.00

G. Hyperparameter Sensitivity Analysis

We include hyperparameter experiments in our study. Due
to space constraints, we added analysis using ResNet18 on
CIFAR-10 and SVHN datasets. In Tables 1 and 2, we use
α with values of [0.5,1.0,1.5,2.0,2.5,3.0] for the experiments.
The results indicate that SPS is not sensitive to hyperpa-
rameter variations. It is important to note that α setting
too low, such as 0.5, suppresses a significant number of
model parameters, leading to a decrease in the model’s ability
to forget. Additionally, we added experiments on λ1 with
values of [0.005,0.01,0.05,0.1,0.15] and λ2 with values of
[0.01,0.05,0.10,0.50,1.00] in the model inversion. Whether it
is ADr or ADf

, the fluctuation of accuracy does not exceed
2%. The findings demonstrate that UISPS is also not sensitive
to hyperparameters during model inversion.

H. Detail of Membership Inference Attacks

We adopt the member inference attack framework used
in [9]. We first obtain the predicted probability distributions
of the unlearned model for both the training and test sets.

Subsequently, we employ a logistic regression model for bi-
nary classification training and evaluate the member inference
attack success rate with the prediction results of the unlearned
model on the forgotten data.

I. Limitations and Future Work

The purpose of our method is to unlearn when the data of the
class to be forgotten cannot be used. It can essentially preserve
the model’s performance on the retained class. However,
there is still no good solution for sample-level unlearning
under zero-glance conditions. Although our method performs
excellently among the current methods supporting class-level
forgetting, the forgetting of random data or a subset of a class
is beyond the scope of this work. Future work may require
the development of more general methods under zero-glance
conditions that can meet the needs of sample-level and class-
level unlearning.

