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Abstract—Speech data stored in the cloud are vulnerable to
attribute inference attacks, which can lead to the leakage of
sensitive attribute information. This paper proposes a novel
privacy-preserving scheme that combines secret sharing and
steganography to enhance Privacy Protection for speech data.
Experimental results demonstrate that the proposed method ef-
fectively defends against attribute inference attacks and enhances
robustness against malicious interference and data corruption.
It achieves an optimal balance between privacy protection and
data availability by ensuring the successful reconstruction of the
original speech without compromising security.
Keywords: Secret Sharing, steganography, Defends against attribute
inference attacks, Enhance Privacy Protection,

I. INTRODUCTION

In smart voice services, there is frequently a requirement to
employ sensitive features involving private user attributes to
ensure a more convenient service. Many enterprises contem-
plate the utilization of cloud servers for the storage of user
voice-sensitive data features [1]. This approach is driven by
the desire to circumvent the constraints imposed by limited
computing resources and the risk of direct theft of voice data
when storing it locally [2]. Adopting this strategy would enable
enterprises to offer real-time voice data processing services.
Despite the apparent advantages and convenience of using
cloud servers to store voice data, the privacy and security
of these stored voice features will continue to be enhanced,
given that they are directly related to the private information
of individual users. In 2019, voice messages of Facebook
users were transcribed and stored without user consent. These
messages contain sensitive information about users and private
information such as users’ identities, addresses, and finances
and can be easily compromised, leading to various potential
security risks. This serious privacy threat has attracted the
attention of government, industry, and academia. The intro-
duction of security and privacy compliance obligations such
as the EU’s General Data Protection Regulation (GDPR) [3]
and the California Consumer Privacy Act (CCPA) [4] has
given users greater autonomy over their data, including voice
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recordings. As a result, the Company is expected to enhance
privacy protection and control over its critical information.

The primary potential privacy threat associated with the
storage of voice data in cloud-based systems pertains to
the possibility of malicious attacks initiated by the cloud
itself, given the typically semi-trusted nature of cloud servers.
Common attacks include eavesdropping [5] and voice reply
[6], which can lead to user privacy breaches and identity
fraud. Furthermore, the potential exists for stealing sensitive
user data using attribute inference attacks [7]. Privacy con-
cerns are becoming increasingly pronounced, with attribute
inference attacks representing a particular area of concern.
Consequently, enhancing the security of cloud-based voice
data storage is imperative. To address these concerns, enter-
prises can employ various encryption methods, such as the
AES encryption method [8], [9], to enhance voice privacy
protection. This approach offers a theoretical guarantee of
security and privacy for speech. However, overly reliance on
a pre-set key renders the system vulnerable to compromise,
resulting in the inability to reconstruct original voice data in
the event of key loss or damage. In the event of the voices
above being encrypted and situated directly in the cloud, it
will be easy to detect the state of the cipher information in it
and then feel that it is some classified information and thus
directly carries out malicious damage, which will cause a lot
of losses. Therefore, it is necessary to use robust methods
for this potential interference phenomenon. In this regard, a
combination of secret sharing [10] and audio steganography
can be used, enhancing the security and privacy of speech very
well. Specifically, steganography that embeds all processed
secret share shares in random audio can hide these secret
shares and make them difficult to detect. Furthermore, even
if a small number of shares are lost due to mismanagement
or damage to cloud storage, the original voice data can still
be reconstructed, provided a suitable secret share recovery
mechanism has been implemented.

Given the robust outcomes attained by secret sharing and
audio steganography in speech data processing in the face of
the aforementioned interference scenarios, this paper proposes
a novel scheme integrating these two approaches to enhance
the privacy of speech-sensitive features. The proposed scheme
involves several methods, including lattice coding, Chinese
remainder theorem, secret sharing, and audio steganography, to
ensure the security of speech-sensitive features. The proposed
method integrates all secret shares obtained by randomly
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processing speech-sensitive features into the frequency domain
of random carrier audio. This approach ensures that the impact
of these shares on the audio is minimized, making them
difficult to detect. Consequently, the secret shares are rendered
highly covert. Once embedded in the audio, shares are stored
and managed separately, and they are no longer all saved in
the cloud. The original speech features are only reconstructed
once a specified share recovery threshold has been attained.
This approach ensures that the effects of attribute inference
attacks are circumvented, and even if an attacker were to
steal some of the shares at the storage location, it would be
secured by the inability to analyze or reconstruct the original
speech effectively. The effectiveness of the proposed method
is empirically evaluated through experimental validation on
four different datasets. The experimental results confirm the
method’s effectiveness in resisting attribute inference attacks
and protecting the privacy and security of sensitive speech
features. The highlights of our original contributions are
summarized below:

• Enhanced Privacy Protection: The proposed method
can effectively improve the privacy and security of sensi-
tive part-of-speech data and can effectively resist attribute
inference attacks.

• Robustness against malicious interference: The solu-
tion demonstrates robust and reliable performance during
operation, even during unexpected malicious interference
or damage. This is achieved by improving random secret
sharing applied to speech and using appropriate recovery
thresholds.

• Preservation of Voice Usability: The proposed enhance-
ment of privacy and speech integrity is evaluated by
executing simulation experiments. The objective is to
ensure the integrity of speech data while enhancing user
privacy.

II. RELATED WORK

In the domain of privacy preservation in speech, there are
already established methodologies, including traditional clas-
sical encryption techniques, such as homomorphic encryption
methods [11], [12] , which can be applied to speech well
to encrypt some sensitive information. Still, there are some
problems if the encrypted information is uploaded to the
upstream server; due to the untrustworthiness of the upstream
server, it is possible to infer the corresponding sensitive data
due to curiosity. May infer the corresponding sensitive data
due to curiosity; meanwhile, the same problem exists in joint
learning [13] in the speech domain, but recently, there has
been privacy-enhanced joint learning against attribute infer-
ence attack, which can achieve the effect of resisting curiosity
inference attack to a certain extent [14]. Still, this method
is only for single sensitive information. The computational
overhead and privacy protection effect are unsuitable for si-
multaneous sensitive details in multiple speech. Overhead and
privacy protection are not reasonable. Some recent encryption
methods, such as AES encryption [8], [9], can provide good
privacy but often tend to rely too much on the key when used.
Meanwhile, some methods directly add noisy, distorted data

to conduct inference attacks on sensitive information, such
as the differential privacy method, which can ensure personal
privacy well. Still, due to the addition of noisy, distorted data,
the high precision information will be significantly affected,
such as voiceprint data, leading to a significant decrease in
the accuracy of voiceprint authentication [15]–[18]. Compared
with these methods, the designed scheme can better protect the
availability of data and information while resisting attribute
inference attacks.

It is also possible to protect voice privacy by detecting audio
noise interference, i.e., using sound sensors to interfere with
ambient sound. The INFOMASKER system was developed
for voice eavesdropping [19]. The system utilizes acoustic
sensors within the environment to inject sound into the climate
based on the noise of the mobile phone. The analysis of
voice signals captured by a wiretap is rendered unfeasible
without interfering with daily life and thus cannot protect an
individual’s voice privacy. However, the acoustic sensors in
this approach possess a constrained operational range, ensuring
privacy within a delineated area. Once this range is exceeded,
the efficacy of the system diminishes.

Therefore, with development and progress, there are ma-
chine learning methods that protect privacy; it is possible to
add scrambling to speech, even if a malicious user uses it to
synthesize speech, the maliciously synthesized voice sounds
no longer the original voice [20] due to the existence of the
perturbation to achieve the effect. The complete voice leakage
at the hardware microphone level [21] is also a method of
countering perturbation. In the case of the malicious collection
of microphones, voice conversion will be carried out using
maliciously collected signals to achieve the effect of privacy
protection. Unlike the protection of complete speech, this
study focuses on the privacy of sensitive information in the
voice. For the safety of some sensitive information in the
voice, there are some machine learning anonymization meth-
ods, and anonymization suppresses the individual recognizable
elements in the voice signal while retaining other aspects,
mainly the user’s voice data, which is processed through
the anonymization system. The anonymous system hides
the speaker’s sensitive attributes, does not affect other non-
sensitive attributes, and ensures that the anonymous speaker’s
voice sounds like the same hypothetical speaker spoke it.
For the emotional data in speech [22], [23], it is proposed
to set up a privacy middle layer between the user and the
cloud service to purify the voice input. The cyclic generative
adversarial network converts the original speech input into a
speech signal without emotion to realize the stylistic transfer
of speech emotion and protect the user’s speech emotion data.
For the identity authentication of voiceprint data in speech,
a V-CLOAK real-time voice anonymization system was pro-
posed to ensure the clarity, naturalness, and sound quality of
speech conversion [24]. FAPG systems also implement speech
conversion for specific goals to protect privacy [25]. However,
these methods can only protect sensitive data in a single voice,
and it may not work well if you need to protect multiple
sensitive attributes simultaneously. Furthermore, a privacy-
preserving framework in a crowdsourcing environment has
been proposed, which employs a hybrid learning approach
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to train the feature extractor and can effectively safeguard
multiple sensitive attributes in the data [26]. The proposed
approach has been validated in terms of both its privacy
and utility on both image and text datasets. However, it
should be noted that the attributes between images and text
are relatively more independent than those in speech data
and that the correlation between various attributes in speech
data is not the same [7]. Consequently, the approach is not
suitable for the field of speech privacy protection. Another
approach for speech is the recently proposed voice fence wall
[27], which separates sensitive and non-sensitive speech in
speech and uploads non-sensitive speech information. Still,
this approach only uploads some non-sensitive information.
Conversely, our methodology entails the direct enhancement
of privacy safeguards for sensitive elements of speech data.
And the present study employs a clandestine steganography
scheme grounded in secret sharing. In contradistinction to
extant classical speech steganography methods [28], [29] that
aspire to safeguard speech security, the pivotal characteristic of
this research method is its integration of secret sharing. This
mechanism can more efficaciously resist attribute inference
attacks and concomitantly enhance speech privacy security.

III. PRIEMINARY

This section reviews some of the main methods used for
knowledge and the techniques used to protect privacy and
security.
A. Privacy Security Protection Artifact

To start the review, it is necessary to define lattice coding
first. Lattice coding maps raw data features into a discrete
space using a lattice structure. The mapping process may yield
multiple candidate outputs rather than a single result. In lattice
coding, the data is not simply encoded as a specific value;
instead, it is represented by selecting a suitable point in a high-
dimensional space with some inherent coding redundancy. The
presence of redundant information renders the relationships
between data more complex and ambiguous. The encoding
process can be described by finding the lattice point X that is
closest to the feature vector of the original data as follows:

y = argmin
z∈L

∥X − z∥

∥X − z∥ represents the encoding error between the original
data X and the lattice point z. y is the encoded data point.
The encoded speech data has a certain amount of redundancy,
making it more difficult for an attacker to decode it.

Next, the Chinese Remainder Theorem (CRT) is a mathe-
matical theorem that solves the problem of satisfying a system
of congruent equations under multiple moduli [30]. A unique
solution can satisfy all congruence conditions for mutually
prime moduli. In addition to enhancing the system’s security,
this approach effectively alleviates the overdependence on
participants. T is the participant threshold required to recover
the secret S. If the number of participants is greater than or
equal to T , the secret can be recovered as follows:

S =
∑

i∈D where D≥T

riMiyi (mod M)

By combining linear secret sharing and the Chinese Remainder
Theorem, suppose the secret S distributed to N participants
through linear secret sharing is represented using the Chinese
Remainder Theorem as follows:

S =

N∑
i=1

siMiyi (mod M)

where si is the secret part generated by participant i, Mi

is the computed quotient, and yi is the modular inverse of
Mi. Each secret part si is shared based on different modulus
congruences, enhancing the system’s security.

Audio steganography can be defined as the process of
embedding secret information in the frequency domain of a
speech signal without being easily detected. The most suitable
location for embedding the secret information for stegano-
graphic embedding is identified by combining a convolutional
neural network (CNN) to balance the quality of the embedded
secret information and the quality of the carrier audio after
embedding. Assume that the input of the CNN model is
the frequency domain signal X(t, f), where X ∈ RT×F ,
and T represents the number of discrete points in the time
dimension, and F represents the number of discrete points in
the frequency dimension. Each element X(t, f) represents the
signal value at time t and frequency f . It will output a weight
matrix W to indicate which positions are most suitable for
embedding secret information as follows:

W = CNN(X(t, f)) W ∈ RT×F

Based on the weight matrix W , the best time-frequency points
(ti, fi) are selected for embedding secret information. These
selected points (ti, fi) can be used to adjust the signal X(t, f)
as follows:

X(ti, fi) → X(ti, fi) + ∆X(ti, fi, s)

∆X(ti, fi, s) is the increment added to embed the secret bit
s, which is usually a slight adjustment to the phase.

IV. PROBLEM FORMULATION

Suppose the voice intelligence service provider enterprise
collects the voice data features of the users to be stored in the
cloud. In this case, the semi-trusted nature of the cloud may
lead to malicious speculation by the cloud about the sensitive
attributes involved in these speech features, which may result
in user privacy leakage.
A. Threat Model

We consider the adversary a third party’s semi-trusted
cloud, which destroys a portion by analyzing its content or
maliciously corrupting it. The adversary may:

1) Speech-sensitive features stored on cloud servers are
vulnerable to semi-trusted cloud attribute inference at-
tacks, which can infer sensitive parts of the message
design

2) The unauthorized recording or distribution of voice
messages transmitted by the user is prohibited;

Once one of the two methods described above has been
accomplished, an adversary can extract sensitive information
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from it, which may result in the disclosure of sensitive infor-
mation. The present paper focuses on enhancing the privacy
of sensitive part-of-speech information stored in the cloud.

B. The workflow for Protecting Voice Privacy

This delineates the privacy-preserving workflow in our
scheme. To further enhance the privacy of the user’s voice,
a steganography-based linear secret-sharing scheme has been
designed to address this issue, as illustrated in Figure 1. The
scheme comprises three phases to maximize the privacy of
speech-sensitive features. This ensures that the privacy of the
user’s speech is secure in the event of a malicious attack. The
scheme also balances voice privacy and usability, ensuring that
speech-sensitive features f can be fully recovered.

The workflow of the proposed program entails the initial
processing of speech data. The proposed scheme emphasizes
enhancing the privacy of speech-sensitive attribute features.
This is achieved by performing a series of processing oper-
ations on sensitive voice feature f . These operations include
feature extraction and data quantification. The purpose of this
phase is to prepare the preprocessing for the subsequent pri-
vacy enhancement operations. Then, a lattice coding operation
is performed to map the processed sensitive feature vectors to
the high-dimensional lattice vectors x, thus completing the lat-
tice coding process. To further enhance privacy, noise vectors
are also crafted and added to the encoded lattice vectors, and
the next privacy enhancement operation is performed for this
lattice vector x′.

Preprocessed sensitive speech lattice vectors are encoded
and processed as target s to apply a secret sharing scheme.
Following a meticulously designed linear secret-sharing op-
eration, the encoded vectors are divided into multiple shares
with carefully configured recovery thresholds. This approach
enhances speech privacy while ensuring accurate reconstruc-
tion of the original speech. Subsequently, these secret sharing
shares are embedded in carrier audio for secret and secure
transmission. Following the steganography process, the result-
ing audio files (stego1, stego2, . . ., stegon) are not stored solely
on a semi-trusted cloud. Conversely, a distinct storage method
is employed, whereby a proportion of shares are retained on
a local device. These shared shares can be retrieved from
their respective storage locations and merged to reconstruct
the original data for further use.

To demonstrate the usability of the data recovered from
the privacy-preserving scheme, the process is initiated by
retrieving audio files from their respective storage locations to
reconstruct the speech. The steganography recovery procedure
initially extracts the embedded secret information from the
steganographic audio. Subsequently, a linear secret-sharing re-
covery mechanism is employed. Utilizing a predefined recov-
ery threshold, designated as t, collecting a sufficient number
of secret shares yields a unique solution to the linear secret
sharing equation, thereby reconstructing the original high-
dimensional lattice-encoded vector, denoted as x′. Finally, a
recovery operation is performed to recover the original speech
feature vector.

V. PROPOSED METHOD

The proposed method is principally employed to secure
the voice-sensitive attributes of users stored in the cloud
server, primarily through voice steganography and linear secret
sharing, to enhance the privacy of voice-sensitive attributes.
A. Preprocess Module

In our framework, the voice data processing module is
the first step in privacy processing. In this module, we need
to accurately extract the sensitive information features in
the user’s voice and perform data preprocessing and privacy
enhancement operations to facilitate the next processing step.

This paper focuses on processing sensitive attribute features
in speech data used for intelligent speech services. These
features are processed based on the sensitive attributes selected
by the user, with the emotional and voiceprint attributes being
given primary consideration. The frequency representation of
the speech data over a specific time period is first obtained
using the short-time Fourier transform(STFT). The feature
extractor for the corresponding attributes is trained to perform
the classification task using the Table I datasets, and a cross-
entropy loss function is invoked to measure the classifier’s
performance [27], thus enabling better extraction of speech
features involving sensitive attributes. The amalgamation of
these features into feature vectors is instrumental in enhancing
the representation of sensitive attribute features in speech.

These feature vectors are represented as sensitive attribute
features for the next step in the process. The sensitive features
are then subjected to quantization operations to transform the
feature vectors f using non-uniform quantization techniques
into discrete integer vectors fq . If multiple data features are
extracted, fusion and truncation operations are performed to
align the features for subsequent processing.

Then, privacy enhancement operations are performed on
these sensitive feature data to counter attribute inference at-
tacks. First, a suitable high-dimensional lattice dimension k is
selected for these processed vectors to generate k independent
basis vectors {b1, b2, . . . , bk}. These vectors define the lattice
structure to form lattice points, as shown in Equation (3). The
lattice points composed of the linear combination of these
basis vectors map the quantized speech feature vector to the
nearest lattice point code x found by the neighborhood search
algorithm to complete the lattice point coding operation. To
complete the lattice point coding operation, the preprocessed
sensitive feature vector, designated as fq , is mapped to the
lattice point code, represented by x. This mapping process
can be expressed as fq → x.

The encoded high-dimensional lattice point vector has a
complex data point distribution, which may show coding re-
dundancy in the encoding process. Some feature combinations
are repeated in different data points, resulting in the same
code. Then, additional redundant information r is embedded in
the voice point after lattice coding, as shown in Equation (1).
The introduction of coded redundant information facilitates the
retention of sufficient data in the event of partial data loss or
corruption. This excess information can then be utilized in the
decoding process for interpolation and extrapolation, thereby
enhancing recovery accuracy.
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Fig. 1. Workflow for enhanced voice sensitive attribute feature privacy Protection

Next, select an appropriate noise vector n ∼ N (0, σ2) and
add it to the encoded lattice vector x shown in Equation (2).
This makes the lattice vector more challenging to analyze and
infer, thereby protecting the original sensitive features from
direct access.

x1 = x+ r (1)

x′ = x+ n (2)

sx =

{
k∑

i=1

xibi | xi ∈ Z, bi ∈ Rk

}
(3)

B. Privacy Enhancement Module

Implementing a secret-sharing-based speech steganography
scheme is primarily intended to enhance privacy security.

The preprocessed sensitive speech coding vector x is ini-
tially encoded and processed as the target s for applying the
secret sharing scheme. Combined with the Chinese Residual
Theorem (CRT), the encoded vector x after data preprocessing
will be partitioned into multiple shared segments, also called
shared shares. Expressly, a set of random seeds is first set
to generate a set of random numbers from random seeds
{m1,m2, . . . ,mk} ensure k > t. These numbers should fulfill
the following conditions:

1) Ensure that a set of numbers is randomly generated.
2) This set of numbers should have no relationship with

each other and are mutually prime. That is, for any mi

and mj , it is necessary to satisfy gcd(mi,mj) = 1 to
ensure that the modulus composed of these numbers has
a unique solution.

The set of numbers is treated as modulus, while the vector x’
is treated for segmentation coding according to Equation (2)
and as a shared segment S. This is calculated according to
the different moduli and finally partitioned into n segments to
obtain n shared shares {S1, S2, . . . , Sn} as follows:

P (x) = S + a1x+ a2x
2
2 + · · ·+ at−1x

t−1

Sharei is secret sharing gets a secret share which we denote
as Si and can be expressed as Si = (xi, si), si is the value of
each Share is calculated as follows:

si = {P (xi) mod m1, . . . , P (xi) mod mk}

A threshold value t must be set, which is t ≥ 0.8n, to ensure
that a certain number of secret shares must be collected to
recover the original secret. Even if the attacker maliciously
obtains a small portion of the shares, restoring the secret
information is impossible. It is challenging to infer the orig-
inal secret information from the partial information obtained
because the random moduli are not correlated with the fact
that there are less than t shared segments, the original coded
information cannot be obtained because the unique solution
cannot be obtained, effectively preventing data leakage and
also dramatically increasing the difficulty of the attribute
inference attack. After ensuring that at least t shared fragments
are collected, the original coded information can be completely
recovered. The underlying principle of this scheme is rooted
in the concept of secret sharing, a method of information
security predicated on the theoretical principles of information
theory [31]. The objective of secret sharing is to guarantee the
absolute security of the information in question.

Upon completing the secret-sharing process, the next
step is to store the secret shares securely and covertly.
A covert transmission process is employed, where the se-
cret shares are transmitted to designated storage locations.
This is accomplished through frequency-domain steganog-
raphy, where the secret shares are first embedded into
audio carriers before transmission. Specifically, given the
set of n secret shares {S1, S2, . . . , Si, . . . , Sn}, n audio
segments are randomly selected as steganographic carriers
{cover′1, cover′2, . . . , cover′i, . . . , cover′n}. These carriers are
processed using frequency-domain steganography, where each
segment undergoes Short-Time Fourier Transform (STFT)
as Equation (4) to convert the time-domain representa-
tion of audio into a form that shows the frequency at
a certain point in time, i.e., a time-frequency representa-
tion {cover1, cover2, . . . , coveri, . . . , covern}. Applied to the
speech data among the secret share splits, the encoded vector
is split into multiple shares, and a reasonable threshold is
designed to balance privacy protection with data recovery
availability. Select the carrier audio cover using Short Time
Fourier Transform (STFT): x(t): input the audio signal, w(t):
window function used to intercept part of the signal, m: time
offset, ω: frequency variable, to decompose the carrier audio
to select the high-frequency part of the carrier audio as the
carrier for embedding the secret information, and embed the
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secret information generated by the secret Share as the secret
in the carrier audio.

{x(t)}(m,ω) =

∫ ∞

−∞
x(t)w(t−m)e−jωt dt (4)

A trained convolutional neural network (CNN) is employed
to determine the optimal hidden embedding locations within
the coverage of the high-frequency region of the carrier
audio, thus facilitating the execution of the secret implicit
embedding operation. The selected coefficients of the high-
frequency portion of the STFT are extracted from the fre-
quency domain representation of the STFT. Subsequently,
bit flipping is employed to modify the value of the lowest
valid bit of the frequency coefficients, which is minimally
weighted. It has been demonstrated that modification of this bit
hardly affects the overall magnitude of the value. The overall
magnitude of the value enables the hiding of information. It
ensures that the embedded information is imperceptible to the
human ear (i.e., the carrier frequency domain representation)
without significantly altering the signal, thereby preserving
data privacy. The secret information sharing, denoted by si,
and the embedding function, fembed, are used to generate the
steganographic audio, which contains the secret Share. This is
illustrated as follows:

stego i(m,ω) = cover i(m,ω) + fembed(si, cover i)

Each secret Share is embedded in a specific high-frequency
location of the carrier audio Fourier coefficients. This strategic
placement ensures that the embedded information cannot be
detected during transmission, thus effectively enabling covert
communication. After embedding the covert shared informa-
tion, the carrier audio is reconstructed into normal time domain
format using Inverse Short Time Fourier Transform (ISTFT).
Recover the time-domain audio from the stego frequency
domain representation stego i(m,ω) as follows:

{stego i(m,ω)}(t) =
∫ ∞

−∞
stego i(m,ω)ejωtw(t−m) dω

The resulting audio contains embedded steganographic infor-
mation, and the transmission of this audio is less likely to
detect the secret information, thus achieving secure and covert
transmission. This steganographic transmission method dra-
matically enhances the privacy of the secret sharing program,
ensuring that sensitive data is transmitted securely, covertly,
and undetectably. Instead of storing all of the data in a semi-
trusted cloud, a portion of the data is stored in local secure
storage devices such as local computers and cell phones,
reducing the likelihood of an attack being realized.

C. Voice Reconstruction and Recovery

The original usable voice data can still be obtained to reflect
the availability of data from the privacy protection program,
and the final recovery of voice data is also an essential step
in this program. The process commences with steganography
recovery, extracting the secret information from the stegano-
graphic audio. Secret sharing recovery is then employed,
Combining Lagrange interpolation and the Chinese remainder

theorem to reconstruct the original high-dimensional lattice
coding vectors from the extracted secret information data
according to the set recovery threshold by t. The final stage is
lattice coding recovery to recover the original speech feature
vector.

To reflect the availability of voice data and continue the
efficient use of innovative voice services, obtaining the original
data from the privacy-preserving scheme and verifying its
availability is necessary. This process starts with collecting
steganographic audio from different storage locations first
to check if it is usable, followed by selecting the usable
steganographic audio starting from steganography recovery
and extracting the secret information embedded in the previous
step, i.e., extracting the embedded shared shares from the
steganographic audio. These secret shares are used to solve
the unique solution of the equation to recover the original
feature information, collect at least t shared segments, and re-
cover encoded high-dimensional vectors x′ using the Chinese
remainder theorem. The recovery process includes:

• (1) For each modulus, the collected
shares{S1, S2, . . . , St} were utilized and computed
using Lagrange interpolation, as expressed below:

P (x) mod mi =

t∑
j=1

sj [i] ·
t∏

k=1

xj − xk

x− xk
mod mi

• (2) The polynomial value p(x) can be recovered by
combining the Chinese Remainder Theorem (CRT) as
follows:

P (x) =

k∑
i=1

(P (x) · w mod mi) mod M

w = mi ·Mi ·M−1
i

Each segment sj [i] represents the value of the polynomial
P (x) at a specific point xj is expressed as for sj [i] =
P (xj).The product of all moduli, denoted by M is given by
M =

∏k
i=1 mi . The result of dividing the total modulus

M by the current modulus mi, denoted as Mi satisfies the
congruence condition:

Mi ×M−1
i ≡ 1 (mod mi)

Finally, the polynomial P (x) is successfully reconstructed, and
its constant term, corresponding to P (x), yields the secret S

Subsequently, a series of processes are conducted, including
noise elimination decoding, recovery, and verification. In the
noise decoding stage, The variance of the preceding additive
noise is σ2. Wiener filtering, utilizing a linear filter, enables
noise removal by minimizing the mean square error [32].
The redundancy introduced during the lattice encoding stage
ensures that even if some shares are compromised due to noise,
the remaining redundant shares provide sufficient information
for recovery. This enhances the overall data usability and
significantly improves the accuracy of data recovery.

Following the decoding and recovery of the noise, the
lattice-coded vectors can be decoded and recovered from the
discrete lattice space. This is achieved by combining redundant
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information with an inverse transform of the mesh coding
operation. The result is the original feature vector before
mapping, designated as fq . To obtain the original feature
vector, it is necessary to map the quantized feature values back
to the original values as far as is feasible. Following acquiring
the original features, must be restored to the initial time-
domain speech signal utilizing an inverse STFT transform.
Successive iterations of the Griffin-Lim algorithm are then
used to recover the forfeited phase information during the
privacy-enhancing processing phase [33]. The iterations are
optimized to determine the best phase information for the
speech signal to efficiently reconstruct the time-domain signal
and ensure the quality and naturalness of the speech. Exper-
imental validation is necessary for applications to determine
the difference between the final recovered speech feature and
the initial speech.

VI. EVALUATION

This section comprehensively conducts experiments to eval-
uate our voice steganography based on linear secret-sharing
performance. We first introduce the Experiment setup, dataset,
performance metrics, and experimental evolution. Then, we
report and analyze the experimental results from various
perspectives.
A. Experimental Setup

We evaluate the impact of linear steganography sharing,
particularly the proposed framework, on model accuracy. In
our experiments, we trained and evaluated the steganographic
models using the TensorFlow 2.10 framework on a server
equipped with an NVIDIA RTX 4060 GPU. Parameter Config-
uration: The batch sizes used for the speech emotion extraction
and voiceprint feature extraction modules are 16 and 64,
respectively. Both modules use an Adam optimizer with an
adaptive learning rate, an initial learning rate of 1e-6, a
sampling rate of 16KHZ, and a quantization level 1024 for
the lattice encoding dimensions of 128. A standard deviation
of the added Gaussian noise of 0.001σ and a secret share of
10 for the secret Share. The Share of secret sharing is set to
10, and the corresponding threshold t to be recovered is 8, and
the number of Griffin-Lim iterations in the recovery process
is set to 500. After setting up the parameters, the experiment
is started.
B. Dataset

We present a list of the five datasets considered for use:
RAVDESS: The dataset comprises 24 actors uttering a

sentence in a North American accent while displaying a range
of emotions. We utilize the speech data from this dataset,
labeled with five emotion categories (angry, happy, sad, fearful,
and surprised), to extract features to validate the privacy
associated with multiple sensitive features.

LibriSpeech: is a large open-source English speech recog-
nition dataset consisting of about 1,000 hours of English
speech read aloud from audiobooks from the LibriVox project,
carefully segmented and aligned, with about 2,000 speakers
participating that can be used for voiceprint privacy testing

IEMOCAP: The IEMOCAP dataset comprises 12 hours
of audiovisual data from 10 actors. It encompasses both

scripted and improvised dialogue between male and female
actors in the English language. The data were segmented by
speaker turn, resulting in 5,255 scripted and 4,784 improvised
recordings. These recordings contribute substantially to the
study of multimodal emotion recognition tasks.

VoxCeleb1: The VoxCeleb1 dataset is a widely used re-
source for speaker verification. It comprises over 100,000
quotes from more than 1,251 celebrities extracted from
YouTube videos, with audio from multiple speakers in various
acoustic environments, including outdoor stadiums and red
carpets. The dataset is relatively balanced concerning gender
and is also employed in voiceprint privacy testing tasks.

GTZAN: The GTZAN dataset contains 1000 30-second-
long audio tracks divided into 10 genres of 100 tracks each.
This is a standard dataset for music genre classification and
music information retrieval, and the dataset was used as the
carrier audio in the steganography experiments.

The initial four datasets were used as the confidential data
set for evaluating privacy and eventual recovery. In contrast,
the final music dataset was utilized as the carrier audio for
the steganography process as the confidential dataset. Table I
delineates the distinctive attributes of each dataset. For each
dataset, partitioning was implemented, whereby 80% of the
dataset was utilized for training and 20% was allocated for
testing.

TABLE I
DIFFERENCE VOICE DATASET

Dataset Emotion Users Gender
Voxceleb1 - 1000 Male,Female

LibriSpeech - 1000 Male,Female
REVADESS 5 24 Male,Famale
IEMOCAP 4 10 Male,Famale

C. Metrics

Before the experimental evaluation, it is necessary to intro-
duce the relevant terminology and evaluation metrics. In the
initial assessment phase, the system’s ability to resist privacy
leakage is assessed by implementing a series of attacks that
potentially leak the user’s privacy. The most critical of these
is the ability to withstand membership inference attacks, and
the accuracy of attack algorithms (ACC) is used to assess
the privacy situation under a range of attack algorithms. In
addition, the final recovered data will be evaluated using
Associated Task Accuracy (ACC) and Equivalent Error Rate
(EER) as metrics to assess the efficacy of speech emotion
recognition and voiceprint verification.

In a binary classification problem, EER denotes the error
rate obtained by the classifier with equal true and false negative
error rates. It is a metric used to test the performance of speech
data, the smaller the value, the lower the error rate and the
stronger the model performance.

The Mean Square Error (MSE) is a metric employed in
the domain of privacy security to evaluate the impact of
steganography and privacy-preserving schemes on the quality
of speech data. The MSE is determined by comparing the
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original data with the speech data processed by the privacy
schemes. A smaller MSE thus indicates a closer match to the
original speech after processing. MSE quantifies the impact
of privacy protection on data availability. Let N be the total
number of samples, yi be the actual value, and ŷi be the
predicted value. The formula is:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

Several data points can assist in verifying the effectiveness
of the recovered data. Signal-to-Noise Ratio (SNR) is used
to measure the signal quality of the recovered audio relative
to the noise. xi are the original audio samples, and x̂i is the
sample value of the restored audio, The formula is:

SNR = 10 · log10

(∑N
i=1(xi − x̂i)

2∑N
i=1 x

2
i

)
Meanwhile, Short-Time Objective Intelligibility (STOI) is

used to evaluate the intelligibility of the recovered audio,
especially in speech-related tasks, to assess the effect of the
final reconstruction of the recovered obtained speech, where
T is the number of time frames, F is the number of frequency
components, xt,f and hatxt,f are the values of the original and
recovered audio at the t moment and f frequency component,
The formula is:

STOI =
1

T

T∑
t=1

∑F
f=1 x

2
t,f∑F

f=1 x̂
2
t,f

·
F∑

f=1

(xt,f · x̂t,f )


D. Evaluation

We will first verify that our program protects users’ sensitive
attributes while maintaining good data utility. The scheme’s
privacy security is verified by mimicking the effect under the
influence of just the environment and then several attribute
inference attacks. The usability of the final recovered data is
obtained by the effect of the final reply data and the signal-
to-noise ratio of the data.

To demonstrate the adequacy of our experiments, we focus
on the emotional and identity attributes contained in the
speech data in our experiments. Therefore, we simulate the
following two types of users in use with our scheme for
privacy enhancement.

• Bob: Bob doesn’t want to reveal emotional attributes.
The choice is to enhance privacy protection of emotional
attribute features.

• Alice: Alice does not want to reveal identity attributes.
The choice is to enhance privacy protection of voiceprint
attribute features.

Table I lists several types of speech data and their char-
acteristics. Our scheme considers privacy and utility and then
performs an analysis based on these two features. We evaluated
the utility and privacy-preserving capability of speech fencing
using RAVDESS, IEMOCAP, LibriSpeech, and VoxCeleb1
datasets.

The following two user selection scenarios will be simulated
in isolation, and the privacy of the proposed scheme will be
evaluated. To this end, the study will simulate half-trusted
upstream servers that may exist in an actual physical network
environment. Attack scenarios involving the inference of ad-
ditional attributes are then performed using four commonly
utilized algorithms on data necessitating privacy protection.
The ACC(%) of the aforementioned attacking algorithms is
then used to evaluate the privacy of our scheme’s secret-
sharing-based speech steganography scheme.

• Support vector machine (SVM): SVM classifiers find
a hyperplane in N-dimensional space (N: number of
features) to accurately classify data points. Use the Radial
Basis Function (RBF) to simulate an attribute inference
attack on the processed data.

• Random forest (RF): The RF algorithm is an integrated
learning algorithm that improves the stability and accu-
racy of the model by combining multiple decision trees.
In our experiments, we set the number of decision trees
to 200. For simulation to perform attribute inference.

• Statistical Analysis-Based Attacks (SABA): Hidden at-
tributes can be inferred indirectly by analyzing statistical
correlations and distribution patterns between attributes
in a dataset. It is a simulated attribute inference attack.

• Reconstruction Attacks (RA): Reconstruction attacks can
use known parts of the information, dependencies be-
tween attributes, and parts of the data to infer the sensitive
characteristics of the data, which is also an attribute
inference attack to simulate a semi-trusted cloud server.

Two standard machine learning inference attack algorithms
were first simulated, as demonstrated in Table II and Table
III, as soon as Figure 2 and Figure 3. Specifically, two user-
selected requirements were simulated, and then an attack on
sensitive attribute features in speech data was inferred by
comparing them with several selected SOTA methods. Specifi-
cally, wav2rac [34] is utilized as the baseline for experimental
comparison in the speech domain, while Privacy Enhanced
Federated Learning (PE-FL) [14] and speech data processed by
our scenario are employed for attribute inference attack valida-
tion. Next, we conducted experimental tests on Bob and Alice
users by simulating two other attacks on wav2vec and voice
fence wall [27] and on our scheme. Subsequently, the needs
of Bob’s users are simulated to perform sensitive attribute
inference on the data processed by wav2rac and Purifier [35] as
well as the approach under investigation. As can be seen from
the table and graphical results, the data processed with the
proposed scheme effectively reduces the accuracy of sensitive
attribute inference. This result suggests that the protection of
users’ voice attribute features has been enhanced. Furthermore,
this outcome corroborates the finding that the secret-sharing-
based speech steganography scheme demonstrates superior
performance in terms of privacy preservation.

The steganography module was evaluated after secret shar-
ing to facilitate a more comprehensive assessment of the
privacy performance of the modules examined in this study.
The primary objective of the evaluation was to ascertain the
steganography module’s efficacy in facilitating covert trans-
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TABLE II
EMOTION FEATURE INFERRING ATTACKS USING DIFFERENT ACOUSTIC SYSTEMS FOR EXTRACTING PROPERTIES OF REPRESENTATIONS ACC (%)

wav2vec PE-FL ours
REVADESS IEMOCAP REVAEDSS IEMOCAP REVADESS IEMOCAP

SVM 77.3 75.7 48.6 45.5 44 42
RF 72.5 72.2 46.7 44.2 37.6 38.9

TABLE III
VOICEPRINT FEATURE INFERRING ATTACKS USING DIFFERENT ACOUSTIC SYSTEMS FOR EXTRACTING PROPERTIES OF REPRESENTATIONS ACC (%)

wav2vec Purifer ours
VoxCeleb1 LibriSpeech VoxCeleb1 LibriSpeech VoxCeleb1 LibriSpeech

SVM 73.2 71.4 45.2 43.3 43 41.8
RF 69.8 68.6 44.2 43.4 40.5 39.6

TABLE IV
PERFORMANCE METRICS OF STEGANOGRAPHIC MODULES UNDER

EXTERNAL NOISE INTERFERENCE

noise amplitude SNR MSE Audio hash changes
0 35.3dB 0.0002 unchanged

0.005 31.5dB 0.0014 unchanged
0.01 28.8dB 0.0139 unchanged

TABLE V
OUR PROGRAM OF THE RECOVERY ORIGINAL VOICE DATA

REVADESS LibriSpeech VoxCeleb1 IEMOCAP
MSE 0.00043 0.00042 0.00032 0.00027
SNR 19.8dB 20.5dB 22.3dB 23.6dB
STOI 0.78 0.81 0.83 0.84

Fig. 2. Voice emotion attributes datasets SABA and RA inference attack
ACC%

Fig. 3. Voiceprint attributes datasets SABA and RA inference attack ACC%

Fig. 4. REVADESS test for recovery voice emotion feature ACC% Fig. 5. REVADESS test for recovery voice emotion feature EER%

missions. This is achieved by simulating a man-in-the-middle
attack for malicious damage during transmission and testing
the change in the audio hash value in the case of added noise
interference.

As shown in Table IV, no alteration was observed during
simulated attacks on the audio hash value. To achieve superior

concealment, the steganography module was simulated, with
two additional noise amplitude interferences being introduced
under the audio effect. Despite slight noise interference in the
external environment, superior audio quality was maintained
during the simulation of the attack on the audio hash value.
This indicates that the steganography module can function ro-
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bustly in the presence of noise interference, thereby facilitating
covert transmission and enhancing privacy and security.

To verify this, reconstructing and recovering the original
speech feature after privacy protection constitutes an essential
element of the proposed solution. The following experimental
tests have been conducted on the voice performance of the
final data obtained after voice data feature reconstruction and
recovery.

As illustrated in Table 5 for the four datasets, the testing
effect, superior reconstruction of the original speech data, and
normal audibility, there are some slight distortion phenomena.
However, a very small MSE can be observed, the original
data has been recovered very well, they do not affect the data
feature itself. The experiment successfully reconstructed the
original speech using only t = 8 , while maintaining the
original speech features even when the remaining n − t = 2
shares were damaged. In Figure 5 and Figure 6, a very small
EER and can be observed, indicating that the voice data has
not been affected by the larger one and can continue to be
used.

The experimental voice data demonstrate that our scheme
substantially enhances privacy and resilience against specific
malicious attacks, including attribute inference attacks. Addi-
tionally, the scheme exhibits some robustness against external
noise interference. While the final recovery data may not be
optimal, they can be fully recovered to retrieve the original
speech data.

Fig. 6. EER% of all voice recovery data feature

VII. CONCLUSION

The storage of speech data in the cloud is vulnerable to
an attack known as attribute inference, which can result in the
leakage of sensitive information due to the semi-trusted nature
of the cloud. The proposed solution addresses this vulnerability
by enhancing the privacy protection of sensitive informa-
tion contained within speech data. Specifically, the solution
involves implementing separation and privacy enhancement
operations on speech data-sensitive features. The resilience of

this operation against potential malicious attacks is demon-
strated through experimental validation on multiple speech
datasets. Voice protection is ensured, and data recovery in
normal listening environments is facilitated by better recovery
of intact speech data, as no significant differences are detected
in such environments. Consequently, users can continue to
use similar innovative voice services with confidence, and the
eventual recovery of speech data may require optimization
of the performance of high-precision intelligent speech data,
which will be the focus of our continued research.
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thesis, Aksaray Üniversitesi Fen Bilimleri Enstitüsü, 2017.
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